Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros


Intervalo de año de publicación
2.
Front Cell Infect Microbiol ; 11: 709972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395315

RESUMEN

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Asunto(s)
Lepra , Mycobacterium leprae , Adenosina Trifosfato , Colesterol , Humanos , Lípidos
3.
s.l; s.n; 2021. 14 p. tab, graf.
No convencional en Inglés | Sec. Est. Saúde SP, HANSEN, CONASS, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1293071

RESUMEN

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Asunto(s)
Humanos , Lepra , Mycobacterium leprae , Adenosina Trifosfato , Colesterol , Lípidos
4.
PLoS Negl Trop Dis ; 11(12): e0006117, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29244821

RESUMEN

Leprosy is endemic in large part of Brazil with 28,761 new patients in 2015, the second largest number worldwide and reaches 9/10.000 in highly endemic regions and 2.7/10.000 in the city of Fortaleza, Ceará, Northeast Brazil. For better understanding of risk factors for leprosy transmission, we conducted an epidemiologic study supplemented by 17 locus VNTR and SNP 1-4 typing of Mycobacterium leprae in skin biopsy samples from new multibacillary (MB) patients diagnosed at a reference center in 2009 and 2010. Among the 1,519 new patients detected during the study period, 998 (65.7%) were MB and we performed DNA extraction and genotyping on 160 skin biopsy samples, resulting in 159 (16%) good multilocus VNTR types. Thirty-eight of these patients also provided VNTR types from M. leprae in nasal swabs. The SNP-Type was obtained for 157 patients and 87% were of type 4. Upon consideration all VNTR markers, 156 different genotypes and three pairs with identical genotypes were observed; no epidemiologic relation could be observed between individuals in these pairs. Considerable variability in differentiating index (DI) was observed between the different markers and the four with highest DI [(AT)15, (TA)18, (AT)17 and (GAA)21] frequently demonstrated differences in copy number when comparing genotypes from both type of samples. Excluding these markers from analysis resulted in 83 genotypes, 20 of which included 96 of the patients (60.3%). These clusters were composed of two (n = 8), three (n = 6), four (n = 1), five (n = 2), six (n = 1), 19 (n = 1) and 23 (n = 23) individuals and suggests that recent transmission is contributing to the maintenance of leprosy in Fortaleza. When comparing epidemiological and clinical variables among patients within clustered or with unique M. leprae genotypes, a positive bacterial index in skin biopsies and knowledge of working with someone with the disease were significantly associated with clustering. A tendency to belong to a cluster was observed with later notification of disease (mean value of 3.4 months) and having disability grade 2. A tendency for lack of clustering was observed for patients who reported to have lived with another leprosy case but this might be due to lack of inclusion of household contacts in the study. Although clusters were spread over the city, kernel analysis revealed that some of the patients belonging to the two major clusters were spatially related to some neighborhoods that report poverty and high disease incidence in children. Finally, inclusion of genotypes from nasal swabs might be warranted. A major limitation of the study is that sample size of 160 patients from a two year period represents only 15% of the new patients and this could have weakened statistical outcomes. This is the first molecular epidemiology study of leprosy in Brazil and although the high clustering level suggests that recent transmission is the major cause of disease in Fortaleza; the existence of two large clusters needs further investigation.


Asunto(s)
Lepra/transmisión , Mycobacterium leprae/genética , Brasil/epidemiología , Análisis por Conglomerados , Genotipo , Geografía , Humanos , Lepra/microbiología , Repeticiones de Minisatélite/genética , Epidemiología Molecular , Factores de Riesgo , Análisis Espacial
5.
Infect Immun ; 84(9): 2429-38, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27297389

RESUMEN

The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP.


Asunto(s)
Acetilmuramil-Alanil-Isoglutamina/metabolismo , Mycobacterium leprae/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Diferenciación Celular/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Inmunidad Innata/inmunología , Interleucinas/metabolismo , Lepra/inmunología , Lepra/metabolismo , Monocitos/metabolismo , Mycobacterium leprae/inmunología
7.
J Bacteriol ; 197(23): 3698-707, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26391209

RESUMEN

UNLABELLED: Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3ß-hydroxysteroid dehydrogenase (3ß-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-(14)C]cholesterol or [26-(14)C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE: Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the mechanisms of mycobacterial pathogenesis, since they indicate that the essential role of cholesterol for M. leprae intracellular survival does not rely on its utilization as a nutritional source. Our findings reinforce the complexity of cholesterol's role in sustaining M. leprae infection. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies.


Asunto(s)
Carbono/metabolismo , Colesterol/metabolismo , Mycobacterium leprae/metabolismo , Metabolismo Energético , Humanos , Lepra/microbiología , Viabilidad Microbiana , Mycobacterium leprae/genética , Mycobacterium leprae/crecimiento & desarrollo
8.
J Bacteriol ; 197(3): 615-25, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25422308

RESUMEN

Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 µM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 µM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells.


Asunto(s)
Antígenos CD/metabolismo , Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Unión a Manosa/metabolismo , Mycobacterium leprae/metabolismo , Superóxido Dismutasa/metabolismo , Western Blotting , Pared Celular/metabolismo , Humanos , Unión Proteica , Resonancia por Plasmón de Superficie
9.
PLoS Negl Trop Dis ; 8(12): e3405, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25521850

RESUMEN

Leprosy is a curable neglected disease of humans caused by Mycobacterium leprae that affects the skin and peripheral nerves and manifests clinically in various forms ranging from self-resolving, tuberculoid leprosy to lepromatous leprosy having significant pathology with ensuing disfiguration disability and social stigma. Despite the global success of multi-drug therapy (MDT), incidences of clinical leprosy have been observed in individuals with no apparent exposure to other cases, suggestive of possible non-human sources of the bacteria. In this study we show that common free-living amoebae (FLA) can phagocytose M. leprae, and allow the bacillus to remain viable for up to 8 months within amoebic cysts. Viable bacilli were extracted from separate encysted cocultures comprising three common Acanthamoeba spp.: A. lenticulata, A. castellanii, and A. polyphaga and two strains of Hartmannella vermiformis. Trophozoites of these common FLA take up M. leprae by phagocytosis. M. leprae from infected trophozoites induced to encyst for long-term storage of the bacilli emerged viable by assessment of membrane integrity. The majority (80%) of mice that were injected with bacilli extracted from 35 day cocultures of encysted/excysted A. castellanii and A. polyphaga showed lesion development that was similar to mice challenged with fresh M. leprae from passage mice albeit at a slower initial rate. Mice challenged with coculture-extracted bacilli showed evidence of acid-fast bacteria and positive PCR signal for M. leprae. These data support the conclusion that M. leprae can remain viable long-term in environmentally ubiquitous FLA and retain virulence as assessed in the nu/nu mouse model. Additionally, this work supports the idea that M. leprae might be sustained in the environment between hosts in FLA and such residence in FLA may provide a macrophage-like niche contributing to the higher-than-expected rate of leprosy transmission despite a significant decrease in human reservoirs due to MDT.


Asunto(s)
Amoeba/microbiología , Mycobacterium leprae/patogenicidad , Animales , Técnicas de Cocultivo , Humanos , Macrófagos/inmunología , Ratones , Ratones Desnudos , Mycobacterium leprae/crecimiento & desarrollo , Fagocitosis , Virulencia
11.
PLoS Negl Trop Dis ; 8(5): e2791, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24874086

RESUMEN

True incidence of leprosy and its impact on transmission will not be understood until a tool is available to measure pre-symptomatic infection. Diagnosis of leprosy disease is currently based on clinical symptoms, which on average take 3-10 years to manifest. The fact that incidence, as defined by new case detection, equates with prevalence, i.e., registered cases, suggests that the cycle of transmission has not been fully intercepted by implementation of multiple drug therapy. This is supported by a high incidence of childhood leprosy. Epidemiological screening for pre-symptomatic leprosy in large endemic populations is required to facilitate targeted chemoprophylactic interventions. Such a test must be sensitive, specific, simple to administer, cost-effective, and easy to interpret. The intradermal skin test method that measures cell-mediated immunity was explored as the best option. Prior knowledge on skin testing of healthy subjects and leprosy patients with whole or partially fractionated Mycobacterium leprae bacilli, such as Lepromin or the Rees' or Convit' antigens, has established an acceptable safety and potency profile of these antigens. These data, along with immunoreactivity data, laid the foundation for two new leprosy skin test antigens, MLSA-LAM (M. leprae soluble antigen devoid of mycobacterial lipoglycans, primarily lipoarabinomannan) and MLCwA (M. leprae cell wall antigens). In the absence of commercial interest, the challenge was to develop these antigens under current good manufacturing practices in an acceptable local pilot facility and submit an Investigational New Drug to the Food and Drug Administration to allow a first-in-human phase I clinical trial.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/aislamiento & purificación , Lepra/diagnóstico , Enfermedades Desatendidas/diagnóstico , Pruebas Cutáneas/métodos , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Armadillos , Técnicas Bacteriológicas/métodos , Estabilidad de Medicamentos , Drogas en Investigación/química , Drogas en Investigación/aislamiento & purificación , Drogas en Investigación/metabolismo , Cobayas , Humanos , Mycobacterium leprae/inmunología , Proyectos de Investigación , Distribución Tisular
12.
PLoS Negl Trop Dis ; 8(5): e2811, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24874401

RESUMEN

BACKGROUND: New tools are required for the diagnosis of pre-symptomatic leprosy towards further reduction of disease burden and its associated reactions. To address this need, two new skin test antigens were developed to assess safety and efficacy in human trials. METHODS: A Phase I safety trial was first conducted in a non-endemic region for leprosy (U.S.A.). Healthy non-exposed subjects (n = 10) received three titrated doses (2.5 µg, 1.0 µg and 0.1 µg) of MLSA-LAM (n = 5) or MLCwA (n = 5) and control antigens [Rees MLSA (1.0 µg) and saline]. A randomized double blind Phase II safety and efficacy trial followed in an endemic region for leprosy (Nepal), but involved only the 1.0 µg (high dose) and 0.1 µg (low dose) of each antigen; Tuberculin PPD served as a control antigen. This Phase II safety and efficacy trial consisted of three Stages: Stage A and B studies were an expansion of Phase I involving 10 and 90 subjects respectively, and Stage C was then conducted in two parts (high dose and low dose), each enrolling 80 participants: 20 borderline lepromatous/lepromatous (BL/LL) leprosy patients, 20 borderline tuberculoid/tuberculoid (BT/TT) leprosy patients, 20 household contacts of leprosy patients (HC), and 20 tuberculosis (TB) patients. The primary outcome measure for the skin test was delayed type hypersensitivity induration. FINDINGS: In the small Phase I safety trial, reactions were primarily against the 2.5 µg dose of both antigens and Rees control antigen, which were then excluded from subsequent studies. In the Phase II, Stage A/B ramped-up safety study, 26% of subjects (13 of 50) showed induration against the high dose of each antigen, and 4% (2 of 50) reacted to the low dose of MLSA-LAM. Phase II, Stage C safety and initial efficacy trial showed that both antigens at the low dose exhibited low sensitivity at 20% and 25% in BT/TT leprosy patients, but high specificity at 100% and 95% compared to TB patients. The high dose of both antigens showed lower specificity (70% and 60%) and sensitivity (10% and 15%). BL/LL leprosy patients were anergic to the leprosy antigens. INTERPRETATION: MLSA-LAM and MLCwA at both high (1.0 µg) and low (0.1 µg) doses were found to be safe for use in humans without known exposure to leprosy and in target populations. At a sensitivity rate of 20-25% these antigens are not suitable as a skin test for the detection of the early stages of leprosy infection; however, the degree of specificity is impressive given the presence of cross-reactive antigens in these complex native M. leprae preparations. TRIAL REGISTRATION: ClinicalTrials.gov NCT01920750 (Phase I), NCT00128193 (Phase II).


Asunto(s)
Antígenos Bacterianos/efectos adversos , Lepra/diagnóstico , Pruebas Cutáneas/efectos adversos , Pruebas Cutáneas/métodos , Adolescente , Adulto , Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/inmunología , Método Doble Ciego , Femenino , Humanos , Lepra/inmunología , Masculino , Persona de Mediana Edad , Mycobacterium leprae/inmunología , Sensibilidad y Especificidad , Adulto Joven
13.
Infect Genet Evol ; 14: 375-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23291420

RESUMEN

New cases of leprosy are still being detected in Colombia after the country declared achievement of the WHO defined 'elimination' status. To study the ecology of leprosy in endemic regions, a combination of geographic and molecular tools were applied for a group of 201 multibacillary patients including six multi-case families from eleven departments. The location (latitude and longitude) of patient residences were mapped. Slit skin smears and/or skin biopsies were collected and DNA was extracted. Standard agarose gel electrophoresis following a multiplex PCR-was developed for rapid and inexpensive strain typing of Mycobacterium leprae based on copy numbers of two VNTR minisatellite loci 27-5 and 12-5. A SNP (C/T) in gyrA (SNP7614) was mapped by introducing a novel PCR-RFLP into an ongoing drug resistance surveillance effort. Multiple genotypes were detected combining the three molecular markers. The two frequent genotypes in Colombia were SNP7614(C)/27-5(5)/12-5(4) [C54] predominantly distributed in the Atlantic departments and SNP7614 (T)/27-5(4)/12-5(5) [T45] associated with the Andean departments. A novel genotype SNP7614 (C)/27-5(6)/12-5(4) [C64] was detected in cities along the Magdalena river which separates the Andean from Atlantic departments; a subset was further characterized showing association with a rare allele of minisatellite 23-3 and the SNP type 1 of M. leprae. The genotypes within intra-family cases were conserved. Overall, this is the first large scale study that utilized simple and rapid assay formats for identification of major strain types and their distribution in Colombia. It provides the framework for further strain type discrimination and geographic information systems as tools for tracing transmission of leprosy.


Asunto(s)
Girasa de ADN/genética , Lepra/epidemiología , Repeticiones de Minisatélite/genética , Mycobacterium leprae/genética , Polimorfismo de Nucleótido Simple , Colombia/epidemiología , Genotipo , Humanos , Topografía Médica
14.
Clin Vaccine Immunol ; 20(2): 181-90, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23239802

RESUMEN

The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called "hypothetical unknowns." Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy.


Asunto(s)
Proteínas Bacterianas/genética , Lepra/diagnóstico , Mycobacterium leprae/genética , Mycobacterium leprae/inmunología , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Sueros Inmunes , Inmunidad Celular/inmunología , Lepra/inmunología , Activación de Linfocitos/inmunología , Mycobacterium leprae/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes , Tuberculosis/inmunología
15.
Mem. Inst. Oswaldo Cruz ; 107(supl.1): 143-149, Dec. 2012. ilus
Artículo en Inglés | LILACS, Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: lil-659752

RESUMEN

We analysed 16 variable number tandem repeats (VNTR) and three single-nucleotide polymorphisms (SNP) in Mycobacterium leprae present on 115 Ziehl-Neelsen (Z-N)-stained slides and in 51 skin biopsy samples derived from leprosy patients from Ceará (n = 23), Pernambuco (n = 41), Rio de Janeiro (n = 22) and Rondônia (RO) (n = 78). All skin biopsies yielded SNP-based genotypes, while 48 of the samples (94.1%) yielded complete VNTR genotypes. We evaluated two procedures for extracting M. leprae DNA from Z-N-stained slides: the first including Chelex and the other combining proteinase and sodium dodecyl sulfate. Of the 76 samples processed using the first procedure, 30.2% were positive for 16 or 15 VNTRs, whereas of the 39 samples processed using the second procedure, 28.2% yielded genotypes defined by at least 10 VNTRs. Combined VNTR and SNP analysis revealed large variability in genotypes, but a high prevalence of SNP genotype 4 in the Northeast Region of Brazil. Our observation of two samples from RO with an identical genotype and seven groups with similar genotypes, including four derived from residents of the same state or region, suggest a tendency to form groups according to the origin of the isolates. This study demonstrates the existence of geographically related M. leprae genotypes and that Z-N-stained slides are an alternative source for M. leprae genotyping.


Asunto(s)
Humanos , ADN Bacteriano/análisis , Variación Genética , Lepra/microbiología , Mycobacterium leprae/genética , Técnicas de Tipificación Bacteriana , Biopsia , Brasil , Genotipo , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Coloración y Etiquetado
16.
Mem. Inst. Oswaldo Cruz ; 107(supl.1): 79-89, Dec. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-659745

RESUMEN

Although leprosy is curable with drug treatment, the identification of biomarkers of infection, disease progression and treatment efficacy would greatly help to reduce the overall prevalence of the disease. Reliable biomarkers would also reduce the incidence of grade-2 disability by ensuring that those who are most at risk are diagnosed and treated early or offered repeated treatments in the case of relapse. In this study, we examined the reactivity of sera from lepromatous and tuberculoid leprosy patients (LPs) against a panel of 12 recombinant Mycobacterium leprae proteins and found that six proteins were strongly recognised by multibacillary (MB) patients, while only three were consistently recognised by paucibacillary patients. To better understand the dynamics of patient antibody responses during and after drug therapy, we measured antibody titres to four recombinant proteins, phenolic glycolipid-I and lipoarabinomannan at baseline and up to two years after diagnosis to investigate the temporal changes in the antibody titres. Reactivity patterns to individual antigens and decreases in antibody titres were patient-specific. Antibody titres to proteins declined more rapidly vs. those to carbohydrate and glycolipid antigens. Compared to baseline values, increases in antibody titres were observed during reactional episodes in one individual. Additionally, antibody responses against a subset of antigens that provided a good prognostic indicator of disease progression were analysed in 51 household contacts of MB index cases for up to two years. Although the majority of these contacts showed no change or exhibited decreases in antibody titres, seven individuals developed higher titres towards one or more of these antigens and one individual with progressively higher titres was diagnosed with borderline lepromatous leprosy 19 months after enrolment. The results of this study indicate that antibody titres to specific M. leprae antigens can be used to monitor treatment efficacy in LPs and assess disease progression in those most at risk for developing this disease.


Asunto(s)
Adolescente , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/sangre , Proteínas Bacterianas/sangre , Glucolípidos/sangre , Lepra/diagnóstico , Lipopolisacáridos/sangre , Mycobacterium leprae/inmunología , Biomarcadores/sangre , Evaluación de la Discapacidad , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Composición Familiar , Lepra/sangre , Proteínas Recombinantes/sangre , Índice de Severidad de la Enfermedad
17.
PLoS Negl Trop Dis ; 6(4): e1616, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22545169

RESUMEN

During recent years, comparative genomic analysis has allowed the identification of Mycobacterium leprae-specific genes with potential application for the diagnosis of leprosy. In a previous study, 58 synthetic peptides derived from these sequences were tested for their ability to induce production of IFN-γ in PBMC from endemic controls (EC) with unknown exposure to M. leprae, household contacts of leprosy patients and patients, indicating the potential of these synthetic peptides for the diagnosis of sub- or preclinical forms of leprosy. In the present study, the patterns of IFN-γ release of the individuals exposed or non-exposed to M. leprae were compared using an Artificial Neural Network algorithm, and the most promising M. leprae peptides for the identification of exposed people were selected. This subset of M. leprae-specific peptides allowed the differentiation of groups of individuals from sites hyperendemic for leprosy versus those from areas with lower level detection rates. A progressive reduction in the IFN-γ levels in response to the peptides was seen when contacts of multibacillary (MB) patients were compared to other less exposed groups, suggesting a down modulation of IFN-γ production with an increase in bacillary load or exposure to M. leprae. The data generated indicate that an IFN-γ assay based on these peptides applied individually or as a pool can be used as a new tool for predicting the magnitude of M. leprae transmission in a given population.


Asunto(s)
Antígenos Bacterianos , Epítopos/inmunología , Ensayos de Liberación de Interferón gamma/métodos , Lepra/diagnóstico , Lepra/transmisión , Mycobacterium leprae/inmunología , Adulto , Anciano , Antígenos Bacterianos/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación
18.
Glycobiology ; 22(8): 1118-27, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22534567

RESUMEN

Mannose-capped lipoarabinomannan (ManLAM) is a complex lipoglycan abundantly present in the Mycobacterium tuberculosis cell envelope. Many biological properties have been ascribed to ManLAM, from directly interacting with the host and participating in the intracellular survival of M. tuberculosis, to triggering innate and adaptive immune responses, including the activation of CD1b-restricted T cells. Due to its structural complexity, ManLAM is considered a heterogeneous population of molecules which may explain its different biological properties. The presence of various modifications such as fatty acids, succinates, lactates, phosphoinositides and methylthioxylose in ManLAM have proven to correlate directly with its biological activity and may potentially be involved in the interactions between CD1b and the T cell population. To further delineate the specific ManLAM epitopes involved in CD1b-restricted T cell recognition, and their potential roles in mediating immune responses in M. tuberculosis infection, we established a method to resolve ManLAM into eight different isoforms based on their different isoelectric values. Our results show that a ManLAM isoform with an isoelectric value of 5.8 was the most potent in stimulating the production of interferon-γ in different CD1b-restricted T-cell lines. Compositional analyses of these isoforms of ManLAM revealed a direct relationship between the overall charge of the ManLAM molecule and its capacity to be presented to T cells via the CD1 compartment.


Asunto(s)
Antígenos CD1/metabolismo , Lipopolisacáridos/metabolismo , Manosa/metabolismo , Mycobacterium tuberculosis/metabolismo , Linfocitos T/metabolismo , Tuberculosis/metabolismo , Antígenos CD1/inmunología , Proliferación Celular , Células Dendríticas/citología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Interferón gamma/metabolismo , Punto Isoeléctrico , Lepra/inmunología , Lepra/metabolismo , Lipopolisacáridos/inmunología , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/aislamiento & purificación , Fosfatos/metabolismo , Isoformas de Proteínas , Succinatos/metabolismo , Linfocitos T/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología
20.
Jpn J Infect Dis ; 65(1): 52-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22274158

RESUMEN

Based on the discovery of three single nucleotide polymorphisms (SNPs) in Mycobacterium leprae, it has been previously reported that there are four major SNP types associated with different geographic regions around the world. Another typing system for global differentiation of M. leprae is the analysis of the variable number of short tandem repeats within the rpoT gene. To expand the analysis of geographic distribution of M. leprae, classified by SNP and rpoT gene polymorphisms, we studied 85 clinical isolates from Thai patients and compared the findings with those reported from Asian isolates. SNP genotyping by PCR amplification and sequencing revealed that all strains like those in Myanmar were SNP type 1 and 3, with the former being predominant, while in Japan, Korea, and Indonesia, the SNP type 3 was found to be more frequent. The pattern of M. leprae distribution in Thailand and Myanmar is quite similar, except that SNP type 2 was not found in Thailand. In addition, the 3-copy hexamer genotype in the rpoT gene is shared among the isolates from these two neighboring countries. On the basis of these two markers, we postulate that M. leprae in leprosy patients from Myanmar and Thailand has a common historical origin. Further differentiation among Thai isolates was possible by assessing copy numbers of the TTC sequence, a more polymorphic microsatellite locus.


Asunto(s)
Proteínas Bacterianas/genética , Lepra/transmisión , Mycobacterium leprae/genética , Polimorfismo de Nucleótido Simple , Factor sigma/genética , Técnicas de Tipificación Bacteriana , Variaciones en el Número de Copia de ADN , ADN Bacteriano/genética , Genes Bacterianos , Sitios Genéticos , Marcadores Genéticos , Genotipo , Humanos , Indonesia/epidemiología , Japón/epidemiología , Corea (Geográfico)/epidemiología , Lepra/epidemiología , Lepra/microbiología , Mycobacterium leprae/clasificación , Mycobacterium leprae/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Tailandia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA